Spatial and temporal variation of total electron content as revealed by principal component analysis

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Temporal-Spatial Variation of Global GPS-Derived Total Electron Content, 1999–2013

To investigate the temporal-spatial distribution and evolutions of global Total Electron Content (TEC), we estimate the global TEC data from 1999 to 2013 by processing the GPS data collected by the International Global Navigation Satellite System (GNSS) Service (IGS) stations, and robustly constructed the TEC time series at each of the global 5°×2.5° grids. We found that the spatial distributio...

متن کامل

Image Denoising using Principal Component Analysis in Wavelet Domain and Total Variation Regularization in Spatial Domain

This paper presents an efficient denoising technique for removal of noise from digital images by combining filtering in both the transform (wavelet) domain and the spatial domain. The noise under consideration is AWGN and is treated as a Gaussian random variable. In this work the Karhunen-Loeve transform (PCA) is applied in wavelet packet domain that spreads the signal energy in to a few princi...

متن کامل

Compression of Breast Cancer Images By Principal Component Analysis

The principle of dimensionality reduction with PCA is the representation of the dataset ‘X’in terms of eigenvectors ei ∈ RN  of its covariance matrix. The eigenvectors oriented in the direction with the maximum variance of X in RN carry the most      relevant information of X. These eigenvectors are called principal components [8]. Ass...

متن کامل

Compression of Breast Cancer Images By Principal Component Analysis

The principle of dimensionality reduction with PCA is the representation of the dataset ‘X’in terms of eigenvectors ei ∈ RN  of its covariance matrix. The eigenvectors oriented in the direction with the maximum variance of X in RN carry the most      relevant information of X. These eigenvectors are called principal components [8]. Ass...

متن کامل

Principal Component Analysis and Qualitative Spatial Reasoning

In this big data modern age, enormous size of data is a challenge for the computer algorithms as well as hardware because important information is hidden in the data. Principal Component Analysis (PCA) is used to transform the data so that meaningful information becomes explicit. The huge dimensional data can be approximated with a few dimensions. Qualitative Spatial Reasoning (QSR), spatial or...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Annales Geophysicae

سال: 2016

ISSN: 1432-0576

DOI: 10.5194/angeo-34-1109-2016